

DEVOIR MAISON V

ECG2 MATHS APPLIQUÉES

Partie 1 : Réduction d'une matrice carrée. On considère la matrice carrée $A = \begin{pmatrix} 2 & -2 & 2 \\ 1 & 1 & 2 \\ -2 & 0 & -3 \end{pmatrix}$.

1. On fournit le code Python dont le résultat de l'exécution apparaît ci-après.

```
import numpy as np
import numpy.linalg as al

A=np.array([[2,-2,2], [1, 1, 2], [-2, 0, -3]])
print (al.matrix_power(A, 3))
```

```
Exécution

1 >>>
2 [[ 2, -2, 2],
3 [ 1, 1, 2],
4 [-2, 0, -3]]
```

Déduire de l'affichage Python ci-dessus une égalité entre deux matrices.

- **2.** Quelles sont alors les seules valeurs propres possibles de A?
- 3. Déterminer le spectre de A.
- 4. Déterminer une matrice D diagonale dont les coefficients sont rangés dans l'ordre croissant et une matrice P inversible de première ligne $\begin{pmatrix} 2 & 3 & -2 \end{pmatrix}$ telles que $A = PDP^{-1}$.
- **5.** Montrer que, pour tout entier $k \ge 0$, on a $A^k = PD^kP^{-1}$.

Partie 2 : Exponentielle d'une matrice carrée. Si (a_n) , (b_n) , (c_n) , (d_n) , (e_n) , (f_n) , (g_n) , (h_n) , (i_n) désignent neuf suites convergentes, de limites respectives a, b, c, d, e, f, g, h, i, et si (M_n) est une suite de matrices de $\mathcal{M}_3(\mathbb{R})$ définie par

$$M_n = \begin{pmatrix} a_n & b_n & c_n \\ d_n & e_n & f_n \\ g_n & h_n & i_n \end{pmatrix},$$

on dit que la suite de matrices (M_n) admet une limite coefficient par coefficient, et on note

$$\lim_{n \to +\infty} M_n = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}.$$

Date: 15 Février 2025. http://louismerlin.fr. Si $M \in \mathcal{M}_3(\mathbb{R})$, on pose, pour tout entier naturel n

$$S_n(M) = \sum_{k=0}^n \frac{1}{k!} M^k.$$

Lorsque $(S_n(M))$ admet une limite coefficient par coefficient, on note e^M cette limite.

- 6. Deux résultats théoriques. On utilisera les notations du préambule de la partie II pour les preuves.
 - a. Soit $M \in \mathcal{M}_3(\mathbb{R})$ et soit (α_n) une suite réelle convergente, de limite ℓ . Montrer que la suite de matrices $(\alpha_n M)$ admet une limite coefficient par coefficient et que

$$\lim_{n \to +\infty} \alpha_n M = \ell M$$

b. Soient (M_n) et (M'_n) deux suites de matrices de $\mathcal{M}_3(\mathbb{R})$ qui admettent chacune une limite coefficient par coefficient. On note $\lim_{n\to+\infty} M_n = M$ et $\lim_{n\to+\infty} M'_n = M'$. Montrer que les suites de matrices $(M_n + M'_n)$ et $(M_n M'_n)$ admettent chacune une limite coefficient par coefficient et que

$$\lim_{n \to +\infty} M_n + M'_n = M + M' \qquad \text{et} \qquad \lim_{n \to +\infty} M_n M'_n = MM'$$

Les candidat es devront référer précisément à ces questions lorsque ces résultats seront utilisés.

- 7. Montrer que, si $D = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}$ est diagonale, alors e^D existe et vaut $e^D = \begin{pmatrix} e^a & 0 & 0 \\ 0 & e^b & 0 \\ 0 & 0 & e^c \end{pmatrix}$.
- **8.** Dans cette question, la matrice M est donnée par $M = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$
 - a. Calculer M^2 et M^3 puis, pour tout entier k supérieur ou égal à 3, déterminer M^k .
 - **b.** Donner, pour tout entier n supérieur ou égal à 2, l'expression de $S_n(M)$. En déduire l'existence et l'expression de la matrice e^M .
- **9.** Dans cette question, la matrice M est donnée par $M = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$
 - **a.** Calculer M^2 .
 - **b.** A l'aide d'un raisonnement par récurrence, déterminer pour tout k de \mathbb{N} l'expression de M^k en fonction de k.
 - c. Établir, pour tout entier naturel n, l'égalité suivante

$$S_n(M) = I + \frac{1}{3} \left(\sum_{k=0}^n \frac{3^k}{k!} - 1 \right) M.$$

d. En déduire que e^M existe et que

$$e^M = I + \frac{e^3 - 1}{3}M.$$

- 10. Dans cette question, on considère la matrice A de la Partie 1.
 - a. Déduire de la Question 5 une expression de $S_n(A)$ en fonction de $S_n(D)$ et P.
 - **b.** Conclure que e^A existe et l'expliciter en fonction de P et P^{-1} (définies à la Question 4) et d'une matrice diagonale que l'on précisera.
- 11. Dans cette question, on considère une matrice diagonalisable $M \in \mathcal{M}_3(\mathbb{R})$.
 - a. Montrer que e^M existe et qu'elle est diagonalisable.
 - **b.** Soit $t \in \mathbb{R}$. Justifier que tM est encore diagonalisable et expliciter une matrice diagonale à laquelle e^{tM} est semblable.

3

Partie 3 : Application à un système différentiel linéaire. On considère le système différentiel

(S)
$$\begin{cases} x'(t) = 2x(t) - 2y(t) + 2z(t) \\ y'(t) = x(t) + y(t) + 2z(t) \\ z'(t) = -2x(t) - 3z(t) \end{cases}$$

où les inconnues x, y, z sont des fonctions définies de classe \mathcal{C}^1 sur \mathbb{R} et, pour tout $t \in \mathbb{R}$, on note

$$X(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}.$$

- 12. Montrer que X est solution de (S) si et seulement si, pour tout $t \in \mathbb{R}$, X'(t) = AX(t) où A est la matrice introduite dans la Partie 1.
- 13. Le système différentiel (S) possède-t-il des équilibres? Si oui, les déterminer.
- 14. Montrer que les solutions du système différentiel (S) peuvent s'écrire sous la forme

$$X(t) = \alpha e^{-t} U_{-1} + \beta U_0 + \gamma U_1 e^t,$$

où α, β, γ sont des constantes réelles et

$$U_{-1} = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}, \quad U_0 = \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}, \quad U_1 = \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}.$$

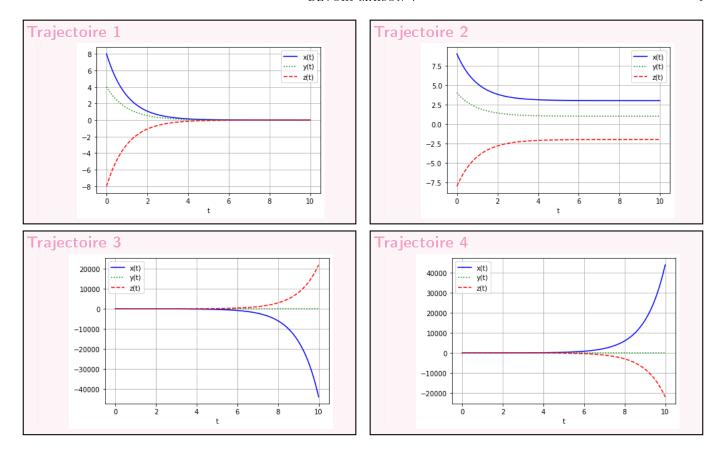
15. On considère les problèmes de Cauchy

$$(\mathcal{P}_1) \quad \left\{ \begin{array}{lll} X'(t) & = & AX(t) \\ X(0) & = & \begin{pmatrix} 9 \\ 4 \\ -8 \end{pmatrix} & \quad \text{et} \quad & (\mathcal{P}_2) \end{array} \right. \quad \left\{ \begin{array}{lll} X'(t) & = & AX(t) \\ X(0) & = & \begin{pmatrix} 3 \\ 2 \\ -3 \end{pmatrix} \right.$$

- a. Déterminer l'unique solution X_1 du problème de Cauchy (\mathcal{P}_1) .
- **b.** Montrer que la trajectoire associée à la solution X_1 est convergente. Expliciter le point limite (ℓ_1, ℓ_2, ℓ_3) . Quelle propriété possède ce point vis-à-vis du système linéaire (\mathcal{S}) ?
- c. Déterminer l'unique solution X_2 du problème de Cauchy (\mathcal{P}_2) .
- d. Montrer que la trajectoire associée à la solution X_2 est divergente.
- e. On a représenté ci-après les tracés de quatre solutions du système (S). Expliciter quelles figures sont les tracés associés aux solutions X_1 et X_2 étudiées ci-avant. Justifier la réponse.
- 16. On reprend les notations de la Question 4 et on considère une solution X de (S) de la forme

$$X(t) = \alpha e^{-t} U_{-1} + \beta U_0 + \gamma U_1 e^t.$$

- **a.** Expliciter e^{tA} pour tout $t \in \mathbb{R}$.
- **b.** En posant $C = P \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$, montrer que $X(t) = e^{tA} \cdot C$.
- c. Commenter le résultat de la dernière question, au regard des résultats du cours sur les équations différentielles du premier ordre à coefficient constant.



Partie 4 : Compléments sur l'exponentielle de matrices. On s'intéresse dans cette partie à l'image de l'application exponentielle définie de manière tout à fait analogue sur $\mathcal{M}_2(\mathbb{R})$.

17. Montrer que si A et B sont deux matrices qui commutent, alors

$$e^{A+B} = e^A \cdot e^B.$$

Indication : On pourra admettre que l'on peut permuter une somme infinie de matrices avec une somme finie.

18. En déduire que toute matrice dans l'image de l'application exponentielle est inversible.

19. Soit
$$B = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$$
.

- \mathbf{a} . Montrer que B est inversible.
- **b.** Montrer qu'il n'existe aucune matrice $X \in \mathcal{M}_3(\mathbb{R})$ telle que $X^2 = B$.
- ${\bf c.}$ En déduire que B n'est pas dans l'image de l'application exponentielle.